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Eigenvalue bounds in magnetoatmospheric shear flow 
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lSA, N Ireland 
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Abstract. A rigorous approach by Barston to stability of Lagrangian systems is used to 
establish both rectangle and semicircle theorems for plane parallel flow along a horizontal 
but otherwise arbitrary magnetic field, permeating a perfectly electrically conducting 
incompressible fluid under gravity. The radius of the semicircle is reduced by magnetic 
effects and stable stratification. A Richardson criterion for stability against constant shear 
flow is also derived. The analogous problem for a compressible fluid is also discussed, and 
for a certain class of disturbances a ‘semi-dumbell’ theorem is established which is 
considerably stronger than the semicircle theorem. Possible astrophysical applications are 
discussed. 

1. Introduction 

Since the appearance of a paper by Howard (1961) on eigenvalue bounds for plane 
parallel flow of an inviscid incompressible stratified fluid, many subsequent papers 
extending and generalising the results have been published (see e.g. Eckart 1963, 
Agrawall969, Chimonas 1970, Acheson 1973, Adam 1978b, among many others). In 
this paper we firstly make use of very general theorems developed by Barston (1977) in 
a study of eigenvalue problems for Lagrangian systems, to investigate eigenvalue 
bounds for magnetogravity shear flow, that is Howard’s original problem with a 
horizontal non-uniform magnetic field superimposed upon the flow. The stability of 
rotating magnetic fluids has received much attention in the past (seeAcheson 1973 for 
further references) and therefore the semicircle theorem and rectangle theorem 
obtained here for plane parallel flow are perhaps not surprising. Nevertheless, the 
rigorous formulation of the problem in the first part of the paper leads to and justifies 
the second aspect of this work, namely consideration of the more difficult eigenvalue 
problem associated with the compressible situation, that is magnetoatmospheric flow. 
This topic has been considered by the author elsewhere (Adam 1978a, hereafter 
referred to as I). A number of results were then established based on the concept of the 
complex ‘wave-energy flux’ function, including a semicircle theorem, but the effective 
radius of the semicircle, while elucidating the stabilising/destabilising effects of the 
various restoring forces, depends on phase velocity. This result is clearly not optimal 
and the second part of this paper contains an improvement of the theorem, subject to a 
certain constraint. This result, a ‘semi-dumbell’ theorem (see figure 2) is considerably 
stronger than the semicircle theorem previously derived (for a certain class of dis- 
turbance) in that it reduces the rCgime of existence of complex (and hence unstable) 
magnetoatomospheric shear modes. The term ‘semi-’ refers to the imaginary part ci of 
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the complex phase velocity c for which ci > 0; obviously since the problem here is an 
idealised non-dissipative one, for every ci > 0 there exists a -ci < 0 corresponding to 
damped oscillatory (for cr # 0) disturbances. 

In § 2 we give the basic background and theorems necessary for the application to 
magnetogravity flow in 0 3. We consider the general magnetoatmospheric case in 0 4, 
and show how in the incompressible limit the rigorous results in § 3 are recovered. 
Section 5 contains the semi-dumbell theorem, giving a bounding curve containing the 
complex eigenvalues corresponding to unstable magnetoatomospheric modes, subject 
to a certain constraint. This constraint is examined in terms of the upper and lower 
bounds on the flow velocity, and brief solar-physical applications are discussed. It is 
hoped to present these in more detail elsewhere. 

2. Theoretical formulation 

In this section we state without proof the relevant theorems derived by Barston (1977), 
to be applied to the governing differential equations (7) and (8) in 0 3. For further 
details the reader is urged to consult Barston (1977). 

The linearised equations governing small perturbations 5 about a state of steady 
motion of a conservative dynamical system can be expressed in the following canonical 
form (see Barston (1977) for a list of further references) 

(1) 

where P, iA and H are time-independent, linear, formally self-adjoint operators with 
domains of definition Dp, DA, DH respectively and range in an inner product space E. 
The above domains are all linear subspaces of E. By seeking solutions of the form 
6 = 4' exp(iwt) where 5 it 0 E E, w E C, we obtain the quadratic eigenvalue problem 

P$ + ~i + ~5 = 0, 5 = 5 ( x ,  z ; t )  

(w2P-wiA -H)l= 0. ( 2 )  

By the term 'formally self-adjoint' applied to an operator F in E we mean (7, F l )  = 
(F77, 5 )  for all 77,5 E D F ,  

- 
( = complex conjugate). Let P > 0 on 0,. For all non-zero 5 E D = D, n DA n DH we 
define the following real functions of a complex variable: 

H * ( O  = (5, H5) P*( l )  = (5, PO A*(f)  = (5, iA5) (3) 

R(5) = H*(O/P*( l ) ,  = A*(S)/P*(t). (4) 

Let d(5)  = R2/4 + R and Q,(5) = A/2 + d1'2. Then t E D (U # 0) and H,, = 0, where 
H, = H + wiA - w2P,  H,,, is a linear operator from D into E, formally self-adjoint on D 
(for 5 E R). 

Hence (5, Hub) = HZ ( 5 )  = 0, that is 

w 2 p * - w ~ * - ~ * = ~  ( 5 )  

which implies w = a+([) or w = Q-(J) .  Define A infD d ( 7 )  (the infimum being taken 
over all non-zero elements of D) .  We now state three preliminary lemmas necessaryfor 
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the theorems we shall state and use below. In what follows [ will be used to represent a 
general point in D, while 77 will refer to points in the subset fi for which d ( 7 )  < 0. 

Lemma 1. If w is an eigenvalue of equation (1) with corresponding eigenvector J, and 
Im w # 0, then [ E D  and 

where the set 6 = (77: 77 ED, 77 # 0, d ( q )  < 0} is non-empty. 
This result means that the complex eigenvalues of equation (1) all lie within a circle 

of radius s centred at the origin of the complex w-plane. This is the type of result we 
seek, but the theorem below expresses a more useful bound on the eigenvalues. 

Lemma 2. A necessary and sufficient condition that the system (1) possess a complex 
eigenvalue w is that A < 0 (see equation (4)) 

Lemma 3. A necessary condition that A < 0 is the existence of a 4 E D  such that 
(4, -H&) > 0 for all real a. 

We now suppose that A < 0 and define the radius function A ”‘(CY), for all real a, 
where 

and that r is a real-valued function such that r (a)  b A 1’2(a) for all real a. 
We now state the most relevant parts of Barston’s work in the following theorem: 

Theorem 1. (i) Every non-real eigenvalue w of the system (1) lies inside the circle 
Iy -a  I G r (a)  in the Argand plane with a real. 

(ii) r (a)  3 (-A)”’, a E (-CO, CO). 

(iii) (Semicircle theorem). Let Cp(r) ,  p E R be the circle of minimum radius for the 
given majorising function r. Then every eigenvalue w of equation (1) with Im w < 0 lies 
in the semicircle Cp(r)  n {y : y E C, Im y < 0). 

(iv) (Rectangle theorem). Every non-real eigenvalue of equation (1) lies inside the 
rectangle M given by IIm(y)( C (-A)”’, inf A ( T )  s 2 Re(y) 6 sup A(q) in the Argand 
plane where the 77’s are chosen from 6. 
It can be shown, as indicated in part (ii), that the least radius of the circle is (-A)”’. 

3. Application to magnetogravity flow 

For this problem we state the governing linearised coupled equations for the problem. 
The case of magneto-atmospheric flow has been discussed in detail in I (see equations 
(Al)  and (A2) in the Appendix) and we take the ( y  +a) incompressible limit to obtain 

(7) 
aP ( 2 it’ 2 a2 

3 + Po ( dt2 - U 0 -i> - = 0.  

- + P o  no +-- a0 7) 6 = 0 az ax 

d’ a2 a6 
ax az 

2 
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The notation is as follows: p = p s  + (Ho . h/47r) is the total pressure perturbation due to 
compressive and magnetic effects, 5 is the vertical component of the Lagrangian 
displacement vector, po(z)  is the equilibrium density distribution, a. = H0/(47rp0)1/2 is 
the AlfvCn velocity, nt  = (-g/po)(dpo/dz) where g = (0,O - g) is the acceleration due to 
gravity. (d/dt) = a/& + Uo(z)a/ax for flow U = ( Uo(z) ,  0,O). Let 

denote the respective space Fourier transform relationships. From now on we deal with 
0, i. Eliminating 0 using equation (8) we obtain the equation 

This can be arranged in the form (1) (dropping the circumflex) 

P ~ + A &  + HS = o (10) 

where the expressions for P, A and H are easily derived. We are concerned with the 
layer z1 d z d z2,  and the Lagrangian perturbation 6 is assumed to vanish at z = z1 and 
z = z2 at all times. 

(The operators P, A and H map D into the inner product space E = C [ z l ,  221; thus 
D c E. It is easily shown that P, iA and H are all formally self-adjoint on D, and that P 
is positive definite on D.) Define the symbol ( ) by 

2 2  

( B ) = I  B dz 
21 

then 

where k # 0, (b ED, (b # 0 ,  po > 0. Therefore 

We define A (c) = sup[-H-kc((b)] for all real c. 
Then it follows from the theorem that for each c E R  every complex eigenvalue w 

lies within the circle C-kc  with centre (-kc,  0) and radius [ A ( C ) ] ~ / ~ ( A  ( c )  S 0 for some c 
implies all eigenvalues must be real). Let a s Uo(z)  s b on [ZI, 221. Then 
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= -akin, say. 

If 

g p b ( ~ )  s k 2 [ G ( c ) - a ; i ,  --@-'?7*] 
for all real c where 

f i 2 = m i n  gpI,(z) > O  
h , z * l (  P " ( Z )  ) 

(where -gpb/po,  if positive, is the square of the Brunt-Vaisala frequency, this being the 
frequency at which a fluid element oscillates about its position of stable equilibrium 
when displaced from that position) and 

CL = ~~~ I (c i ) / (pu l4 I2~1)k2 .  

Since the minimum value of the function G(c) is i (b  - u ) ~  = ;G(a + b ) ,  this result 
implies that every complex eigenvalue w lies within the circle with centre ( - k ( a  + 
b ) / 2 , 0 )  and radius lkl[$(b - a)2 - a;,,, -;-'$'I. This is a circle theorem with radius 
reduced compared with the non-magnetic case. Physically we may argue that in a 
potentially unstable situation, some energy associated with unstable modes due to shear 
$tresses must overcome Lorentz restoring forces in 'corrugating' the magnetic field lines 
according to wavenumber k .  Thus the effective gron th rate of any surviving instabilities 
is reduced compared with the non-magnetic case. 

If the physical situation is such that locally convectively unstable regions exist, that is 
gpb(z)>O for some z E [ZI,  z21 (see Adam (1977) for a detailed discussion of the 
compressible non-magnetic case) then 

A ~ ( c ) <  k 2 ( G ( c ) - a k , ,  + p - - ' N 2 )  V real c 

where 

Thus every complex eigenvalue lies in the circle with centre ( - k ( a  .t b ) / 2 , 0 )  and 
radius lkl{a(b - U ) ~ - U ; ~ ,  + p P 1 N 2 } .  

Finally in this section, we note two further results for the present system. In 0 2, 
theorem l(iv) states that every complex eigenvalue z of the Lagrangian system (1) lies 
within the rectangle M. Now A = -2k (  Uod)/(d), so we obtain a rectangle theorem for 
complex w,  with wi S -kb  s or< -ka.  This rectangle is inscribed by the 
semicircle at maximum radius i ( b  - a )  and is obviously a weaker result. For con- 
venience we represent the diagrams illustrating the results established in this section 
with those in subsequent sections, in the positive upper quadrant, so we note a change 
from w to --U in presenting these results. We can also obtain very simply a sufficient 
condition for stability for a linear flow profile (constant shear) Uo(z) .  It is clear from 
equation (16) that in the case of stably-stratified magnetogravity flow a sufficient 
condition for stability is that R 2  = $(b - a ) 2  - aii, - ; - l N 2  S 0. Given a constant shear 
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flow Uo(z)  in [zl, z2]  we write 

21 

where L = z2  - zl > 0. Then a S U. s b in [zl, z2]  and the above condition becomes 

b - a  ( b  - a )  Uo(z)=-- -z+a--  L L 

for stability. This is similar in form to the well-known Richardson criterion for the 
stability of plane parallel flow of an incompressible inviscid fluid (Howard 1961). Thus 
if, in the case of constant shear, the stabilising effects of stratification and magnetic field 
are sufficiently large compared with the destabilising effect of shear, the flow will be 
stable. 

4. General magnetoatmospheric case 

It has been shown in I that the general magnetoatmosphere shear problem sustains, 
among other things, a smicircle theorem for unstable modes, for the free boundary case. 
Here we consider the rigid boundary case in order to compare with the results of the 
previous section (by taking the limit of incompressibility). We also obtain an 
improvement-subject to a certain constraint on the eigenvalue bound for the 
compressible case. 

The basic equations used in I are given in the Appendix. Here we merely state the 
results. The governing coupled equations are, in operator form 

From now on circumflexes will be dropped on & and 6. We choose rigid 
boundaries at z = 21, z = z2, that is Q(zl) = Q(z2) = 0. Then eliminating P from (A4) 
we have, subject to these boundary conditions 

l d Q  - f f Q = O .  
dz  -I- P -1 dz 

The crucial quantity in formulating the stability theorem in I was the complex normal 
mode wave energy flux -ip(k, 0; z)Q(k, w ;  z )  (suppressing a time factor). Here we 
define the flux g ( k ,  w ; z )  by g ( k ,  w ; z )  = -iwPo. This is done for analytic convenience; 
there exists an obvious symmetry in these two expressions which without change in the 
results entitles this to be done (see I for further details). From equation (A4) we find 
that 

g(k,  w ;  z )  = iwoQ'/P 
and (19) 

g(k, w ;  z )  = i o  
dz 

where equation (18) has been used, and a factor exp(-2 a1 dx) has been suppressed 
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for convenience on the left-hand side; because of the nature of the boundary conditions 
the right-hand side is unaffected. 

We can obtain the result below by making rather long algebraic manipulations as in 
I, but we note from equations (A3 and 4) that 

IPI2 = lQ’I2/IPI2 and IP’12/1a12 = I Q I 2 .  
So we may proceed directly to the form (6.25) of paper I to obtain the result 

[{c, - :(U + b)}2 + C: - ~ ( L Z  - b)’](@) +A G 0 

where now 

where W = la2 - CL”,’, max,{ Uo} = b, min,{ U,} = a, c 0 ( t )  is the sound speed and c = 
w / k  = cr + ici is the complex phase velocity. Result (20) is a semicircle theorem of the 
type we have already discussed, and clearly can be improved on by consideration, in 
particular, of lower bounds on A in terms of @. We can define an effective radius R 
where 

R 2  = $(U - b)2  -A/(@) (21) 

and this elucidates the stabilising effects of various parameters of interest (see I). 
For the case of incompressible non-magnetic shear flow, Kochar and Jain (1979) 

establish a lower bound on the term corresponding to A above which enables them to 
establish a semi-ellipse theorem, incorporating the effect of stratification in a more 
natural fashion. Unfortunatelv, for the compressible magnetogravity problem here 
considered, it appears much more difficult to accomplish this owing to the complexity of 
A and its dependence on w and Uo. Nevertheless we achieve some measure of success 
in this direction by obtaining a ‘semi-dumbell’ theorem which, at worst (given a certain 
constraint) is equivalent to the semicircle theorem given above, and is generally 
stronger. 

Firstly however, to compare the effective radius derived from the stably stratified 
magnetogravity problem in the previous section with that implicit in the result (21) we 
take the limit y ( = c ; p o / p 0 ) +  CO to yield the results for incompressible flow, namely 

A = (k-’n : 101’ + a;lQ’/’) @ = I Q I 2  + k-’1Q’1’; 

now Q = pA’2[ for a Boussinesq fluid (see Appendix) so 

R’ =$(a - 6)’ - ( p o { a ~ d i t )  + n;  I Q I ~ ) ) / ( ~ w )  
which is easily seen to be equivalent to the result already obtained. Thus it appears that 
it is primarily the effect of compressibility which induces w-dependence on R.  In the 
next section we make the compressible result rather stronger for a certain class of 
magnetoatmospheric disturbances. 
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5. A semi-dumbell theorem 

Let us decompose the integral A into the following parts: 

A = ( k - 2 ( x i 4  + ~ 2 4 2 ) )  

where 

and 

Using the inequality W 2 4w?  ( U ,  - kUo)2 we have 

n 'k W 4 w ;  ( U ,  - kUO)*n 
W + n;n; A + C l ; a F  

where A = max,,k,= W and 

Therefore A z = 4 c ? ( c r -  U , - , ) ~ U ~ C L ~ ( ~ J O ~ )  where ci = w i / k ,  c, = w , / k  and 

n;k2c i  
(A + fl",n",)a, K(w,  k ;  z )  = - 2  -- 1 

For future reference we introduce the parameter 

so that 

v k 4 - A  K =  
A + n;n;* 

Defining C; = cr - :(a + b )  we have 
2 2 -4 ((cr- uO)  G O C O  a)ai( lcrI  +$(a - b ) ) 2 ~ ( a )  

where U = 4 min(ii/c;) > 0. Hence A 3 c?c~(lc,l +;(a - b))2( (@) +(K@,I)) and 
inequality (20) takes the form 

[1~.1~+c,2 +cTc,2[l~,I +;(a -b)12-$(a - b ) 2 ] ( a ) + ~ c , 2 [ / ~ r l + $ ( a  - b ) ] 2 ( ~ ~ 1 ) s 0 .  (22) 

This result is conditional on the sign of K :  if K 3 0 we can state at once that the complex 
eigenvalues of the problem are contained within a curve defined by (at most) 

l t r 1 2  + c f + uc T ( 1  C;i + $(a - b l 2  - i (~ - b ) 2  s o (23) 

(semi-dumbell theorem-see figure 2.) The symmetry in E, is apparent since the 
inequality involves IE,l only. 

As will be seen below, this represents an improvement on the standard semicircle 
result, even compared with equation (21) (which has a reduced semicircle) because we 
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Figure 1. Schematic illustration of the rectangle and semicircle theorems for magneto- 
atmospheric flow in the limit y + (magnetogravity flow), â s fi&) < & in the complex d 
plane. 

---- - _ _ _  
P -6 8112 0 Cr 16-ar12 

Figure 2. Schematic illustfation of the ‘semi-dumbell’ theorem for magnetoatmospheric 
flow ( y  < a), â b, in the complex E plane for various values of d. The limiting case 
B -+ 0 recovers the semicircle theorem. 

Uo(z) 

know the shape of the maximal boundary. However, we are clearly n?glecting some 
information on c contained in the second term and so the result for K 2 0, while a good 
improvement is clearly not optimal. The case K < O  is less helpful, as might be 
expected, and implies that the eigenvalues do not necessarily lie within the stated curve. 

The question arises as to under what conditions K 5 0. Clearly, for 77 > O  a 
necessary and sufficient condition for K 2 0 is that 77k4 3 A. A crude upper bound on A 
may be obtained from the inequalities c,” + (cr- U0)’S (b  - a)’, ci S a ( b  -a) ’ ,  
max[aici/~?i]  s max(ag, co2) = V i  say, and RES Vik2. The first inequality comes from 
the fact that since both c and U. are inside the circle or on its perimeter, they cannot be 
further apart than a diameter, that is I C  - UO/ S b -a .  These inequalities enable us to 
write 

2 

A k4{[ V i  +a(b -a)’]’ + g ( b  - a)4}= vok4 (24) 
which is an upper bound on A indpendent of w.  Then a sufficient condition for K 5 0 is 
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that q > 70. Note that q < 0 corresponds to K < 0, so before investigating circum- 
stances under which the sufficient condition q > qo is satisfied it is necessary to 
determine the sign of 7.  From its definition we see that 

Sufficient conditions for q to be positive (irrespective of the value of ao/co) are both 
(i) q: >O(H,>H) and (ii) H , k >  1. Hence q will certainly be positive in those 
stably-stratified regions of the magnetoatmosphere for sufficiently short wavelengths. 
An alternative sufficient condition, independent of the value of k, is that 

(iii) 

For the case of an isothermal atmosphere and uniform horizontal magnetic field 
qg= (y-1)g2/c; and the inequality becomes c",+agcg-(y-l)-'a~ >0, which is 
satisfied provided 

9<2[(-) Y + 3  1'2 -11 -' * 

C O  Y - 1  
(iii) 

For y in the range [1, $1 the corresponding upper bounds on a:/c: from this expression 
lie in the range [0,2/(47 - l)]. 

It is important to note in this example that since U ;  increases exponentially with 
altitude (since the magnetic field strength is constant) the maximum value of a i / c :  in 
the region of interest must satisfy (iii) for the sufficiency condition to be valid. This 
condition, when satisfied, places the range of ao/co in the photospheric and low 
chromospheric regions of the solar amospheric, that is in regions for which U :  S cg. The 
flows observed in these regions (Muller 1973) are subsonic, whereas corresponding 
flows in the coronal regions may reach supersonic velocities. 

The sufficient conditions (i) and (ii) for q > 0, taken together, imply physically that 
for small enough wavelength and stable enough density stratification, less energy is 
available for destabilisation of the system. Condition (iii) deals with density profiles 
that may be even more stably stratified, with q > O  for all wavelengths when this is 
satisfied. 

Under what circumstances is 7 > qo, that is 

v: + +(b - a)2 vg + (b  - a)4 < 77 ? (26) 

Note that when q > 0 , q  < n2kc:/k2a";. Hence a sufficient condition for K > 0 is, in 
terms of an upper bound on k 2 :  

For typical photospheric and low chromospheric values of these parameters, charac- 
teristic of penumbral flows (Muller 1973, ( a i  - cg - (40 km s-')', (b  - a )  - 5 km s-', 
n ;  - 3 x s-') the inequality (27) is in general incompatible with sufficient condition 
(ii), namely k 2  > HL2 = k:in. Thus for our purposes the sufficient condition (iii) is more 
useful in conjunction with (27). Thus provided at a point a i / c :  is sufficiently small, and 
the wavelength is sufficiently large, K will be positive at that point. Over a range of 
altitude we must take account of the fact that both a: and k:ax are altitude dependent. 
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This will mean that over a range of altitude D say, sufficient conditions for K > 0 and 
hence the semi-dumbell theorem to apply are 

assuming y is constant in D. (In practice it is somewhat variable in the solar atmosphere 
but (28) remains valid in this case if the right-hand side is taken to be minD 2[( y + 3/ y - 

It is not the purpose of this paper to investigate the detailed application of the 
conditions (28) and (29) in the context of the solar problems, but it is appropriate to 
consider here the above typical values of parameters and the corresponding value of 
k,,,. Thus for y =$condition (iii) is satisfied (if y < 1 .5  then &c$ must be <1) for the 
above-mentioned atmospheric parameters and we find k;,, = 0-3 X km--*. Hence 
a typical length scale of horizontal variation L = k-' must be such that L > k,',, = 
2000 km, which is of the order of one-two granule sizes. Thus for these parameters, 
provided the typical length scale of horizontal variation associated with the mode 
exceeds about 2 000 km, then K > 0 and the semi-dumbell theorem holds. This means 
(see figure 2) that while the mode may be unstable, the value of ci corresponding to it is 
reduced compared with the semicircle case (K  < 0) for the same value of c,. Since 
solutions of the form t ( x ,  2, t )  - q ( k ,  w ; z )  exp(ik(x - ct)], are being sought, the growth 
of an initial disturbance in time is given by exp(kcit) exp(-ikc,t). Thus if the semi- 
dumbell theorem is valid we may conclude that the maximum possible growth rate of an 
unstable mode with given cr is less (possibly much less) than the maximum possible 
growth rate when K < 0 .  This is consistent with the known result that while dis- 
turbances with the largest wavelengths are most likely to be unstable, they possess in 
general the smallest growth rates (see references in Adam (1978a). From (20 and 30) 
we see that these maximum growth rates are respectively, for E, = 0 (this corresponds to 
the maximum difference between the two results) 

1 p 2  - 1 1 3  

2 

(where for K < 0 we use the semicircle theorem (20)). Once again using the above 
parameters we find that typically (T,,, = 2 and SO for E r  = 0, ( C i ) f A o  = 5 km s-', (Ci)max - 
$ km-s-', a factor 3 down. If b - a  = 10 kms-', (ci)EAo= 5 km s-l, (cJmax - 
5/46 kms-' a factor of more than two smaller. From the shape of the bounding 
semi-dumbell curve in figure 2, it is apparent that the discrepancy between the two cases 
K < 0 and K 2 0 decreases as /E,/ increases from zero, so the differences are seen to be 
largest when E, = 0 corresponding to modes with (real) horizontal phase velocity of 
$(a + b ) ,  the mean flow velocity. All these comments are valid, of course, provided 
k < k,,, for K to be positive semidefinite. 

K>O - 
K>O - 

6. Conclusion 

Clearly, if (T in expression (23) is sufficiently large the shape of the bounding curve for 
unstable modes will differ significantly from that of the semicircle (v=O). Before 
defining a non-dimensional form of I+ we write (23) in the form 
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so for large (T we note again that the value of ci is considerably smaller than the 
corresponding value for (T = 0. This fact, together with the symmetry about the line 
cr = 0, leads to the characteristic dumbell shape illustrated in figure 2. This schematic 
illustration is based on equation (30), suitably non-dimensionalised with respect to co. 
Thus if 6i = m/co etc. then the semi-dumbell theorem becomes ( K  3 0 )  

f r I 2  + c12 +&t?(ICf,l -;(a - 6 ) ) 2 - $ ( &  - 6 ) 2 s  0 (31) 

Thus G is a measure of the total effective pressure (magnetic plus kinetic) compared 
where 6 = 4 min, (a  i + c i ) /c i  b 4. 

with the kinetic pressure, since 

Thus the semi-dumbell theorem would appear from this to be most powerful when 
8 >> 1, corresponding to solar coronal conditions. However, as we have already noted, 
under these circumstances the sufficient conditions for the applicability of the theorem 
are unlikely to hold, and this particular class of modes will only satisfy in general the 
standard semicircle theorem. However, in photospheric and chromospheric magnetic 
regions where 4 s 8 < 10, say, the theorem, when applicabIe, is still a very strong one. 
Preliminary calculations indicate that the theorem is applicable, at least in part, to the 
problem of Evershed flow in sunspot penumbrae. A fuller discussion of this application 
is inappropriate here, but a further theoretical problem of interest is to establish a lower 
upper bound on A to improve the eigenvalue bounds presented here. 

Appendix 

To make this paper as self contained as possible the basic equations and results of paper 
I (Adam 1978) are briefly stated. 

The linearised equations of continuity, motion, induction and adiabatic compres- 
sibility reduce to the equations below for the case of a flow (Uo(z),  0,O) along a 
magnetic field (Bo(z) ,  0,O) in a compressible stratified medium (with a / ay  E 0). 

where (dldt) = ( a / a t )  + Uo(a/ax). The Fourier-Laplace transform 

enables us to obtain a coupled set of ordinary differential equations 

d 1 / 2 - -  ($ + .I) P o d  + (a2  + U 3  z) P o  5 - 0 

( d“,) a 4 p i l f 2 @  + a5 + a6 - p Y 2 i =  o 
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SZ = w - kUo 2 2 2 2 Raz a2=no-SZ + a o k  +- 
2Hc;' 

a3 = ga20/ci, a4 = k 2 -  R2/cg 

Finally, the change of dependent variables 

P = ( z )  exp( I a l ( z )  dz) p' 

where a 1  = - a s / a 6 ,  leads to the operator equation 

where 

p ( z )  = exp( -2 I ' a l  dz) %, (A6) 

Manipulation of the various quantities for the free boundary problem ( P ( z l )  = 

a6 

P(z2) = 0) leads to the semicircle result 

[ [ c , - i ( a  +b)I2+c? -fs(a - b ) 2 ] ( c D ) + A s 0  ('47) 
if c, > 0 ,  where 

where 

We have introduced the following length scales, velocities and frequencies 

H, = c i /g  (a gravito-acoustic length) 

io = a. + c: (magnetoacoustic hybrid velocity Go) 2 2  

and SZL = S Z 2  - S Z ;  2 2 2 2  v = i o / a o ,  f i k  =? lo+aok 
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then a ( z )  = n i  -C12(1 -Clz/nk) and p ( z )  = a i [1+(1-  v2)C12,/Clk] apart from the 
exponential factors indicated in (A5) and (A6). The suppression of these is perfectly 
valid since the analysis makes use of the vanishing of P ( Q )  in the free (rigid) boundary 
value problem, so that the flux vanishes at both z = z1 and z = z2. 

Reference is made in the main body of the paper to the limiting forms of the 
a i ( i  = 1,2 ,  . . . , 6 )  above for a Boussinesq fluid. This limit is obtained as y -* 03, ignoring 
terms in [( l/po)(dpo/dz)] unless they are multiplied by the gravitational acceleration g. 
Thus in this approximation, the influence of compressibility is ignored, except insofar as 
the buoyancy force on an element of fluid moving to a new level is concerned. 

Thus a1 = -u5/u6 = 0 and Q = pA’2( in particular. 
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